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The Need for Parallelism

• Uniprocessor system scaling is hitting limits
— Power consumption increasing dramatically
— Wire delays becoming a limiting factor
— Design and verification complexity is now overwhelming
— Exploits limited instruction-level parallelism (ILP)

• So chip multiprocessors are the future
— Inherently avoid many of the design problems

Replicate small, easy-to-design cores
Localize high-speed signals

— Exploit thread-level parallelism (TLP)
But can still use ILP within cores

— But now we must force programmers to use threads
And conventional shared memory threaded programming is primitive at best . . . 

Motivation
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The Trouble with Multithreading

• Multithreaded programming requires:
— Synchronization through barriers, condition variables, etc.
— Shared variable access control through locks . . .

• Locks are inherently difficult to use
— Locking design must balance performance and correctness

Coarse-grain locking: Lock contention
Fine-grain locking: Extra overhead, more error-prone

— Must be careful to avoid deadlocks or races in locking
— Must not leave anything shared unprotected, or program may fail

• Parallel performance tuning is unintuitive
— Performance bottlenecks appear through low level events

Such as: false sharing, coherence misses, … 

• Is there a simpler model with good performance?

Motivation
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TCC: Using Transactions

• Yes!  Execute transactions all of the time
— Programmer-defined groups of instructions within a program
—

End/Begin Transaction   Start Buffering Results
Instruction #1
Instruction #2
. . .

End/Begin Transaction   Commit Results Now (+ Start New Transaction)
—
—

— Can only “commit” machine state at the end of each transaction
To Hardware: Processors update state atomically only at a coarse granularity
To Programmer: Transactions encapsulate and replace locked “critical regions”

— Transactions run in a continuous cycle . . .

Overview
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The TCC Cycle

• Speculatively execute code and buffer

• Wait for commit permission
— “Phase” provides commit ordering, if necessary

Imposes programmer-requested order on commits
— Arbitrate with other CPUs

• Commit stores together, as a block
— Provides a well-defined write ordering

To other processors, all instructions within a transaction 
“appear” to execute atomically at transaction commit time

— Provides “sequential” illusion to programmers
Often eases parallelization of code

— Latency-tolerant, but requires high bandwidth

• And repeat!

Overview
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Transactional Memory

• What if transactions modify the same data?
— First commit causes other transaction(s) to “violate” & restart
— Can provide programmer with useful (load, store, data) feedback!

Overview
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Sample TCC Hardware

— Write buffer (~16KB) + some new L1 cache bits in each processor
Can also double buffer to overlap commit + execution

— Broadcast bus or network to distribute commit packets atomically
Snooping on broadcasts triggers violations, if necessary

— Commit arbitration/sequencing logic
— Replaces conventional cache coherence & consistency: ISCA 2004

Overview
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Programming with TCC

1. Break sequential code into potentially parallel transactions
— Usually loop iterations, after function calls, etc.
— Similar to threading in conventional parallel programming, but:

We do not have to verify parallelism in advance
Therefore, much easier to get a parallel program running correctly!

2. Then specify order of transactions as necessary
— Fully Ordered: Parallel code obeys sequential semantics
— Unordered: Transactions are allowed to complete in any order

Must verify that unordered commits won’t break correctness
— Partially Ordered: Can emulate barriers and other synchronization

3. Finally, optimize performance
— Use violation feedback and commit waiting times from initial runs
— Apply several optimization techniques

Programming
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A Parallelization Example

• Let’s start with a simple histogram example
— Counts frequency of 0–100% scores in a data array
— Unmodified, runs as a single large transaction

1 sequential code region

 int* data = load_data();
 int i, buckets[101];
 for (i = 0; i < 1000; i++)
 {
   buckets[data[i]]++;
 }
 print_buckets(buckets);

Programming
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Transactional Loops

• t_for transactional loop
— Runs as 1002 transactions

1 sequential + 1000 parallel, ordered + 1 sequential
— Maintains sequential semantics of the original loop

 int* data = load_data();
 int i, buckets[101];
 t_for (i = 0; i < 1000; i++)
 {
   buckets[data[i]]++;
 }
 print_buckets(buckets);

 . . .
0

999

Input

Output

Programming

Time



Programming with TCC 11

Unordered Loops

• t_for_unordered transactional loop
— Programmer/compiler must verify that ordering is not required

If no loop-carried dependencies
If loop-carried variables are tolerant of out-of-order update (like histogram buckets)

— Removes sequential dependencies on loop commit
— Allows transactions to finish out-of-order

Useful for load imbalance, when transactions vary dramatically in length

 int* data = load_data();
 int i, buckets[101];
 t_for_unordered (i = 0; i < 1000; i++)
 {
   buckets[data[i]]++;
 }
 print_buckets(buckets);

Programming
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Conventional Parallelization

• Conventional parallelization requires explicit locking
— Programmer must manually define the required locks
— Programmer must manually mark critical regions

Even more complex if multiple locks must be acquired at once
— Completely eliminated with TCC!

 int* data = load_data();
 int i, buckets[101];
 LOCK_TYPE bucketLock[101];
 for (i = 0; i < 101; i++)
   LOCK_INIT(bucketLock[i]);
 for (i = 0; i < 1000; i++) {
   LOCK(bucketLock[data[i]]);
   buckets[data[i]]++;
   UNLOCK(bucketLock[data[i]]);
 }
 print_buckets(buckets);

Define Locks

Mark Regions

Programming
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Forked Transaction Model

• An alternative transactional API forks off transactions
— Allows creation of essentially arbitrary transactions

• An example: Main loop of a processor simulator
— Fetch instructions in one transaction
— Fork off parallel transactions to execute individual instructions

 int PC = INITIAL_PC;
 int opcode = i_fetch(PC);
 while (opcode != END_CODE)
 {
   t_fork(execute, &opcode,
     EX_SEQ, 1, 1);
   increment_PC(opcode, &PC);
   opcode = i_fetch(PC);
 }

Programming

Time
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Evaluation Methodology

• We parallelized several sequential applications:
— From SPEC, Java benchmarks, SpecJBB (1 warehouse)
— Divided into transactions using looping or forking APIs

• Trace-based analysis
— Generated execution traces from sequential execution
— Then analyzed the traces while varying:

Number of processors
Interconnect bandwidth
Communication overheads

— Simplifications
Results shown assume infinite caches and write-buffers

But we track the amount of state stored in them… 
Fixed one instruction/cycle

Would require a reasonable superscalar processor for this rate

Results
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The Optimization Process

• Initial parallelizations had mixed results
— Some applications speed up well with “obvious” transactions
— Others don’t . . .
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Unordered Loops

• Unordered loops can provide some benefit
— Eliminates excess “waiting for commit” time from load imbalance
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Privatizing Variables

• Eliminate spurious violations using violation feedback
— Privatize associative reduction variables or temporary buffers
— Remaining violations from true inter-transaction communication
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Splitting Transactions

• Large transactions can be split between critical regions
— For early commit & communication of shared data (equake)
— For reduction of work lost on violations (SPECjbb)
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Merging Transactions

• Merging small transactions can also be helpful
— Reduces the number of commits per unit time
— Often reduces the commit bandwidth (avoids repetition)
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Overall Results

• Speedups very good to excellent across the board
— And achieved in hours or days, not weeks or months

• Scalability varies among applications
— Low commit BW apps work in board-level and chip-level MPs
— High commit BW apps require a CMP

Little difference between CMP and “ideal” in most cases
CMP BW limits some apps only on 32-way, 1-IPC processor systems
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• TCC eases parallel programming
— Transactions provide easy-to-use atomicity

Eliminates many sources of common parallel programming errors
— Parallelization mostly just dividing code into transactions!

Plus programmer doesn’t have to verify parallelism

• TCC eases parallel performance optimization
— Provides direct feedback about variables causing communication

Simplifies elimination of communication
— Unordered transactions can allow more speedup
— Splitting and merging transactions simpler than adjusting locks
— Programmers can parallelize aggressively

Some infrequently violating dependencies can be ignored

• TCC provides good parallel performance

Conclusions
Conclusions
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