
Lance Hammond, Brian D. Carlstrom, Vicky Wong,
Ben Hertzberg, Mike Chen, Christos Kozyrakis, and Kunle Olukotun

Stanford University
http://tcc.stanford.edu

October 11, 2004

Programming with
Transactional Coherence

and Consistency (TCC)
“all transactions, all the time”

Programming with TCC 2

The Need for Parallelism

• Uniprocessor system scaling is hitting limits
— Power consumption increasing dramatically
— Wire delays becoming a limiting factor
— Design and verification complexity is now overwhelming
— Exploits limited instruction-level parallelism (ILP)

• So chip multiprocessors are the future
— Inherently avoid many of the design problems

Replicate small, easy-to-design cores
Localize high-speed signals

— Exploit thread-level parallelism (TLP)
But can still use ILP within cores

— But now we must force programmers to use threads
And conventional shared memory threaded programming is primitive at best . . .

Motivation

Programming with TCC 3

The Trouble with Multithreading

• Multithreaded programming requires:
— Synchronization through barriers, condition variables, etc.
— Shared variable access control through locks . . .

• Locks are inherently difficult to use
— Locking design must balance performance and correctness

Coarse-grain locking: Lock contention
Fine-grain locking: Extra overhead, more error-prone

— Must be careful to avoid deadlocks or races in locking
— Must not leave anything shared unprotected, or program may fail

• Parallel performance tuning is unintuitive
— Performance bottlenecks appear through low level events

Such as: false sharing, coherence misses, …

• Is there a simpler model with good performance?

Motivation

Programming with TCC 4

TCC: Using Transactions

• Yes! Execute transactions all of the time
— Programmer-defined groups of instructions within a program
—

End/Begin Transaction Start Buffering Results
Instruction #1
Instruction #2
. . .

End/Begin Transaction Commit Results Now (+ Start New Transaction)
—
—

— Can only “commit” machine state at the end of each transaction
To Hardware: Processors update state atomically only at a coarse granularity
To Programmer: Transactions encapsulate and replace locked “critical regions”

— Transactions run in a continuous cycle . . .

Overview

Programming with TCC 5

The TCC Cycle

• Speculatively execute code and buffer

• Wait for commit permission
— “Phase” provides commit ordering, if necessary

Imposes programmer-requested order on commits
— Arbitrate with other CPUs

• Commit stores together, as a block
— Provides a well-defined write ordering

To other processors, all instructions within a transaction
“appear” to execute atomically at transaction commit time

— Provides “sequential” illusion to programmers
Often eases parallelization of code

— Latency-tolerant, but requires high bandwidth

• And repeat!

Overview

Execute
Code

P0
Transaction

Starts

Wait for
Phase

Arbitrate

Commit

Transaction
Completes

Requests
Commit

Starts
Commit

Finishes
Commit

Execute
Code

P0
Transaction

Starts

Wait for
Phase

Arbitrate

Commit

Transaction
Completes

Requests
Commit

Starts
Commit

Finishes
Commit

P1 P2

Programming with TCC 6

Transactional Memory

• What if transactions modify the same data?
— First commit causes other transaction(s) to “violate” & restart
— Can provide programmer with useful (load, store, data) feedback!

Overview

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

Violation!Time

Transaction B

Transaction A

LOAD X

STORE X LOAD X

STORE X
Commit X

LOAD X

STORE X

Violation!

Re-execute
with new

data

Original Code:

... = X + Y;

X = ...

Programming with TCC 7

Sample TCC Hardware

— Write buffer (~16KB) + some new L1 cache bits in each processor
Can also double buffer to overlap commit + execution

— Broadcast bus or network to distribute commit packets atomically
Snooping on broadcasts triggers violations, if necessary

— Commit arbitration/sequencing logic
— Replaces conventional cache coherence & consistency: ISCA 2004

Overview

Local Cache Hierarchy

Processor Core
Stores
Only

Loads and
Stores

Commits
to other nodes

Write
Buffer

Snooping
from other nodes

Commit Control

Phase
Node 0:
Node 1:
Node 2:

Broadcast Bus or Network

Node
#0

Transaction
Control Bits L1 Cache

Read, Modified, etc.

Programming with TCC 8

Programming with TCC

1. Break sequential code into potentially parallel transactions
— Usually loop iterations, after function calls, etc.
— Similar to threading in conventional parallel programming, but:

We do not have to verify parallelism in advance
Therefore, much easier to get a parallel program running correctly!

2. Then specify order of transactions as necessary
— Fully Ordered: Parallel code obeys sequential semantics
— Unordered: Transactions are allowed to complete in any order

Must verify that unordered commits won’t break correctness
— Partially Ordered: Can emulate barriers and other synchronization

3. Finally, optimize performance
— Use violation feedback and commit waiting times from initial runs
— Apply several optimization techniques

Programming

Programming with TCC 9

A Parallelization Example

• Let’s start with a simple histogram example
— Counts frequency of 0–100% scores in a data array
— Unmodified, runs as a single large transaction

1 sequential code region

 int* data = load_data();
 int i, buckets[101];
 for (i = 0; i < 1000; i++)
 {
 buckets[data[i]]++;
 }
 print_buckets(buckets);

Programming

Programming with TCC 10

Transactional Loops

• t_for transactional loop
— Runs as 1002 transactions

1 sequential + 1000 parallel, ordered + 1 sequential
— Maintains sequential semantics of the original loop

 int* data = load_data();
 int i, buckets[101];
 t_for (i = 0; i < 1000; i++)
 {
 buckets[data[i]]++;
 }
 print_buckets(buckets);

 . . .
0

999

Input

Output

Programming

Time

Programming with TCC 11

Unordered Loops

• t_for_unordered transactional loop
— Programmer/compiler must verify that ordering is not required

If no loop-carried dependencies
If loop-carried variables are tolerant of out-of-order update (like histogram buckets)

— Removes sequential dependencies on loop commit
— Allows transactions to finish out-of-order

Useful for load imbalance, when transactions vary dramatically in length

 int* data = load_data();
 int i, buckets[101];
 t_for_unordered (i = 0; i < 1000; i++)
 {
 buckets[data[i]]++;
 }
 print_buckets(buckets);

Programming

Programming with TCC 12

Conventional Parallelization

• Conventional parallelization requires explicit locking
— Programmer must manually define the required locks
— Programmer must manually mark critical regions

Even more complex if multiple locks must be acquired at once
— Completely eliminated with TCC!

 int* data = load_data();
 int i, buckets[101];
 LOCK_TYPE bucketLock[101];
 for (i = 0; i < 101; i++)
 LOCK_INIT(bucketLock[i]);
 for (i = 0; i < 1000; i++) {
 LOCK(bucketLock[data[i]]);
 buckets[data[i]]++;
 UNLOCK(bucketLock[data[i]]);
 }
 print_buckets(buckets);

Define Locks

Mark Regions

Programming

Programming with TCC 13

Forked Transaction Model

• An alternative transactional API forks off transactions
— Allows creation of essentially arbitrary transactions

• An example: Main loop of a processor simulator
— Fetch instructions in one transaction
— Fork off parallel transactions to execute individual instructions

 int PC = INITIAL_PC;
 int opcode = i_fetch(PC);
 while (opcode != END_CODE)
 {
 t_fork(execute, &opcode,
 EX_SEQ, 1, 1);
 increment_PC(opcode, &PC);
 opcode = i_fetch(PC);
 }

Programming

Time
IF

IF

IF

IF

EX

EX
EX

IF

Programming with TCC 14

Evaluation Methodology

• We parallelized several sequential applications:
— From SPEC, Java benchmarks, SpecJBB (1 warehouse)
— Divided into transactions using looping or forking APIs

• Trace-based analysis
— Generated execution traces from sequential execution
— Then analyzed the traces while varying:

Number of processors
Interconnect bandwidth
Communication overheads

— Simplifications
Results shown assume infinite caches and write-buffers

But we track the amount of state stored in them…
Fixed one instruction/cycle

Would require a reasonable superscalar processor for this rate

Results

Programming with TCC 15

The Optimization Process

• Initial parallelizations had mixed results
— Some applications speed up well with “obvious” transactions
— Others don’t . . .

Results
B

a
s
e

B
a

s
e

B
a

s
e

B
a

s
e

In
n

e
r

L
o
o

p
s .

0

0.2

0.4

0.6

0.8

1

P
ro

c
e
s
s
o

r
A

c
ti
v
it
y

Useful

Waiting

Violated

Idle

art equake tomcatvSPECjbbMolDyn

For 8P:

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e
e
d

u
p

Base

Unordered

Reduction

Privatization

t_commit

Loop Adjust

art equake tomcatvSPECjbbMolDyn

Programming with TCC 16

Unordered Loops

• Unordered loops can provide some benefit
— Eliminates excess “waiting for commit” time from load imbalance

Results
B

a
s
e

+
 u

n
o
rd

e
re

d

B
a

s
e

B
a

s
e

B
a

s
e

In
n

e
r

L
o
o

p
s .

0

0.2

0.4

0.6

0.8

1

P
ro

c
e
s
s
o

r
A

c
ti
v
it
y

Useful

Waiting

Violated

Idle

art equake tomcatvSPECjbbMolDyn

For 8P:

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e
e

d
u
p

Base

Unordered

Reduction

Privatization

t_commit

Loop Adjust

art equake tomcatvSPECjbbMolDyn

Programming with TCC 17

Privatizing Variables

• Eliminate spurious violations using violation feedback
— Privatize associative reduction variables or temporary buffers
— Remaining violations from true inter-transaction communication

Results
B

a
s
e

+
 u

n
o
rd

e
re

d

+
 r

e
d

u
c
ti
o
n

B
a

s
e

+
 p

ri
v
a

ti
z
a

ti
o
n

B
a

s
e

+
 r

e
d

u
c
ti
o
n

B
a

s
e

In
n

e
r

L
o
o

p
s .

0

0.2

0.4

0.6

0.8

1

P
ro

c
e
s
s
o

r
A

c
ti
v
it
y

Useful

Waiting

Violated

Idle

art equake tomcatvSPECjbbMolDyn

For 8P:

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e
e

d
u
p

Base

Unordered

Reduction

Privatization

t_commit

Loop Adjust

art equake tomcatvSPECjbbMolDyn

Programming with TCC 18

Splitting Transactions

• Large transactions can be split between critical regions
— For early commit & communication of shared data (equake)
— For reduction of work lost on violations (SPECjbb)

Results
B

a
s
e

+
 u

n
o
rd

e
re

d

+
 r

e
d

u
c
ti
o
n

B
a

s
e

+
 p

ri
v
a

ti
z
a

ti
o
n

+
 t

_
c
o
m

m
it

B
a

s
e

+
 r

e
d

u
c
ti
o
n

B
a

s
e

+
 t

_
c
o
m

m
it

In
n

e
r

L
o
o

p
s .

0

0.2

0.4

0.6

0.8

1

P
ro

c
e
s
s
o

r
A

c
ti
v
it
y

Useful

Waiting

Violated

Idle

art equake tomcatvSPECjbbMolDyn

For 8P:

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e
e

d
u
p

Base

Unordered

Reduction

Privatization

t_commit

Loop Adjust

art equake tomcatvSPECjbbMolDyn

Programming with TCC 19

Merging Transactions

• Merging small transactions can also be helpful
— Reduces the number of commits per unit time
— Often reduces the commit bandwidth (avoids repetition)

Results
B

a
s
e

+
 u

n
o
rd

e
re

d

+
 r

e
d

u
c
ti
o
n

B
a

s
e

+
 p

ri
v
a

ti
z
a
ti
o
n

+
 t

_
c
o
m

m
it

B
a

s
e

+
 r

e
d

u
c
ti
o
n

+
 l
o

o
p

s
 f
u
s
io

n

B
a

s
e

+
 t

_
c
o
m

m
it

+
 l
o

o
p

s
 f
u
s
io

n

In
n

e
r

L
o
o

p
s

O
u

te
r

L
o
o
p

s

0

0.2

0.4

0.6

0.8

1

P
ro

c
e
s
s
o

r
A

c
ti
v
it
y

Useful

Waiting

Violated

Idle

art equake tomcatvSPECjbbMolDyn

For 8P:

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e
e

d
u
p

Base

Unordered

Reduction

Privatization

t_commit

Loop Adjust

art equake tomcatvSPECjbbMolDyn

Programming with TCC 20

Overall Results

• Speedups very good to excellent across the board
— And achieved in hours or days, not weeks or months

• Scalability varies among applications
— Low commit BW apps work in board-level and chip-level MPs
— High commit BW apps require a CMP

Little difference between CMP and “ideal” in most cases
CMP BW limits some apps only on 32-way, 1-IPC processor systems

Results

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32
0

8

16

24

32

S
p
e

e
d
u
p

Board-Level BW

Chip-Level BW

! BandWidth

art equake tomcatv mpeg-decodeSPECjbbRayTraceLUFactorMolDynAssignment

Programming with TCC 21

• TCC eases parallel programming
— Transactions provide easy-to-use atomicity

Eliminates many sources of common parallel programming errors
— Parallelization mostly just dividing code into transactions!

Plus programmer doesn’t have to verify parallelism

• TCC eases parallel performance optimization
— Provides direct feedback about variables causing communication

Simplifies elimination of communication
— Unordered transactions can allow more speedup
— Splitting and merging transactions simpler than adjusting locks
— Programmers can parallelize aggressively

Some infrequently violating dependencies can be ignored

• TCC provides good parallel performance

Conclusions
Conclusions

TCC
“all transactions, all the time”

More info at: http://tcc.stanford.edu

